

## Presidencia de la República Dominicana Consejo Nacional para el Cambio Climático

y el Mecanismo de Desarrollo Limpio

### **Summer School 2013**

of the

International Partnership on Mitigation and MRV "Tracking Progress and MRV for Greenhouse Gas Emission Reductions"

Hanoi, August 20th to 28th, 2013

Way forward at the national level – getting institutional support and political buy-in in setting ambitions. What makes ambitions achievable?

# The Dominican Republic Case Study

Moises Alvarez
Technical Director



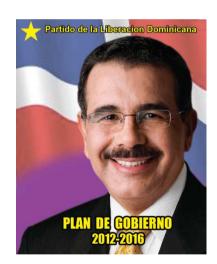








# **Outline**


- INSTITUTIONAL
- LEDS
- CDM
- NAMA



# **National Council for Climate Change And Clean Development Mechanism**

Date: September 20th, 2008

Creation: Decree 601-08, as an instance of public policy coordination and joint efforts in mitigating the causes and adapting to the effects of Climate Change



H.E Danilo Medina Sanchéz
President of the Dominican Republic
and President of the Council



# **National Council for Climate Change And Clean Development Mechanism**

# **Administrative Structure:**





### **Council Members**

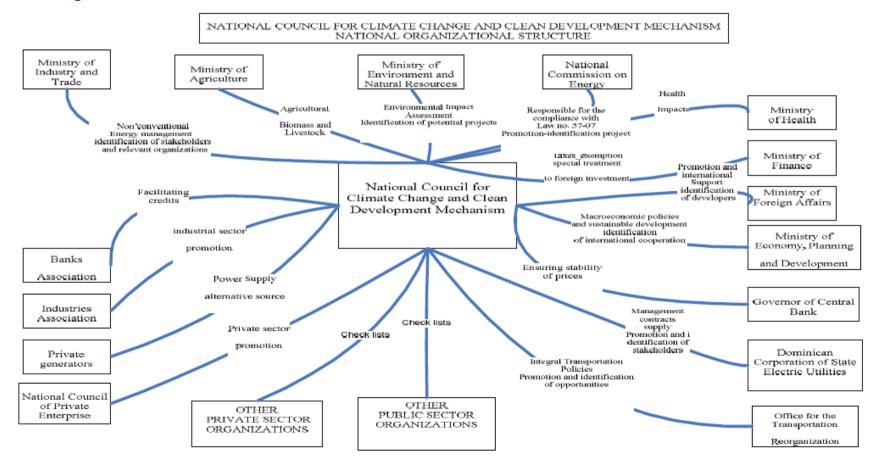
- •Ministry of Environment and Natural Resources
- •Ministry of Economy, Planning and Development
- •Ministry of Agriculture
- •Ministry of Foreign Affairs
- •Ministry of Treasury
- •Ministry of Industry and Commerce
- •Ministry of Public Health and Social Affairs
- Governor of Central Bank of the Dominican Republic
- National Commission of Energy
- Superintendent of Electricity
- Executive Vice-president of Dominican Corporation of State Electric Companies



# Presidencia de la República Dominicana

# Consejo Nacional para el Cambio Climático y el Mecanismo de Desarrollo Limpio

#### NATIONAL COUNCIL FOR CLIMATE CHANGE AND CLEAN **Functional Structure** DEVELOPMENT MECHANISM FUNCTIONAL STRUCTURE NATIONAL COUNCIL FOR CC AND CDM (NCCC and CDM) NATIONAL Achieve ACCOUNT OF Council'decisions CARBON (NAC) Management EXECUTIVE ADMINISTRATIVE NATIONAL VICE PRESIDENT DIRECTORATE OZONE UNIT (EVP) (NOV) NATIONAL OFFICE NATIONAL OFFICE Coordinates OF CC actions, plans and FOR CDM (NOCC) policies (NOCDM) Supporting the EVP Implement projects and to meet SEMARENA PUBLIC SECTOR AND PRIVATE SECTOR under the UNPCCC and commitments the Kyoto Protocol UN CCC ENERGY SOLID WASTE AGRICULTURE INDUSTRY TRANSPORTATION FOREST TOURISM


Roles of CNCCMDL and Public/Private Sectors



# Presidencia de la República Dominicana

# Consejo Nacional para el Cambio Climático y el Mecanismo de Desarrollo Limpio

#### **National Organizational Structure:**





 Supervision and evaluation of the activities executed under the National Offices for Climate Change (NOCC) and Clean Development Mechanism (NOCDM)

# Formulation, design and execution of public policies for mitigation and adaptation to Climate Change;

Develop and approval of the Project's investment strategies under the CDM;

Development of scientific and technical capacities for the formulation of CDM projects in the government and the private sector;

Promotion the development of mitigation projects of climate change that may generate Certified Emission Reductions (CERs), under the requirements of international agreements; and

Establish the inter-institutional coordination needed to assure the implementation of projects that will stabilize the emissions of GHG's.



At the UNFCCC, the Council is the **National Focal Point (NFP)** for CC. The Council is also the **Designated National Authority (DNA)** for the CDM in the Dominican Republic (and the NAMA NFP).

Its objectives, among others, are:

- > Promote and facilitate the implementation of renewable energy, energy efficiency, methane capture, use of less carbon intensive fuels projects, etc.;
- > Facilitate the removal of barriers for the implementation of mitigation projects;
- > Advise the public and private sectors in the preparation of CDM projects;
- > Identify and promote initiatives in terms of Emission Reduction Purchase Agreements in the international market; and
- > Promote the creation and strengthen of local technical capacities for the preparation and development of GHG mitigation projects, following the environmental protection policy of the Dominican State.

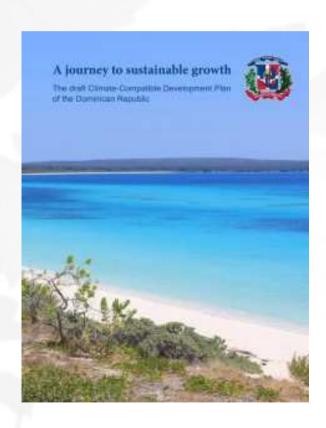


Figure 1: Relating LCDS and NAMAs to development planning





Dominican Republic included in the Constitution the adaptation to climate change as a key element of the policy of land use (territorial order) and environment of the nation (Art. 194)




# Climate-compatible development plan (CCDP) for the Dominican Republic



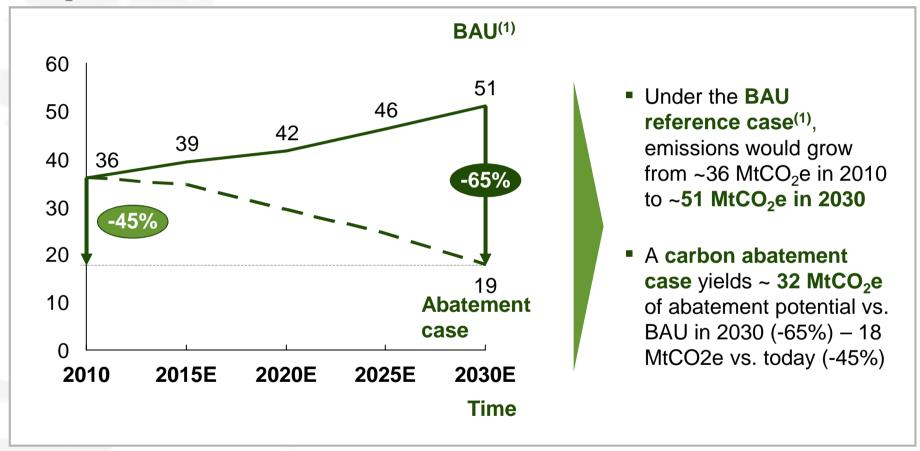


# Climate-Compatible Development Plan – Phase I & II





National Launch September 15th , 2011, National Palace




International Launch COP17 – Durban, South Africa

# Based on DR-specific analysis of technical abatement potential, ~ 65% of its BAU GHG emissions can be reduced by 2030

### **GHG** emissions

MtCO<sub>2</sub>e



<sup>(1) &</sup>quot;BAU" reference scenario is a basis for assessment of mitigation levers and carbon finance negotiations. It is not the most likely scenario, but a theoretical case assuming a country acts in its economic self-interest and does not include additional action for avoiding GHG emissions (e.g. renewables only added if cost competitive with fossils)



# Presidencia de la República Dominicana

# Consejo Nacional para el Cambio Climático y el Mecanismo de Desarrollo Limpio



# International Partnership on Mitigation and MRV

Home Contact Imprint Login RSS

About Partners Topics News Events Projects/Initiatives Resources Videos Links

### The Dominican Republic Commits to a 25% Reduction in Greenhouse Gas Emissions by 2030



The Dominican Republic will cut its greenhouse gas (GHG) emissions by 25%, a target set for 2030. The commitment was announced by Omar Ramírez Tejada, Executive Vice-President of the CNCCMDL (Dominican Republic's National Council for Climate Change and Clean Development Mechanism), during his address to the United Nations Climate Change Conference (COP 18) in the city of Doha, Qatar.

Mr Ramírez Tejada, who headed the Dominican delegation to the conference, explained that Law No. 1-12, which covers the country's National Development Strategy, establishes a binding commitment to achieve

an absolute reduction in GHG emissions in the Dominican Republic compared to 2010 levels.

# Recommended readings

ALL

LEDS

NAMA

MRV

OECD (2012): Tracking Climate Finance: What and How?

UNEP RISOE (2012): Measuring Reporting Verifying: A Primer on MRV for Nationally Appropriate Mitigation

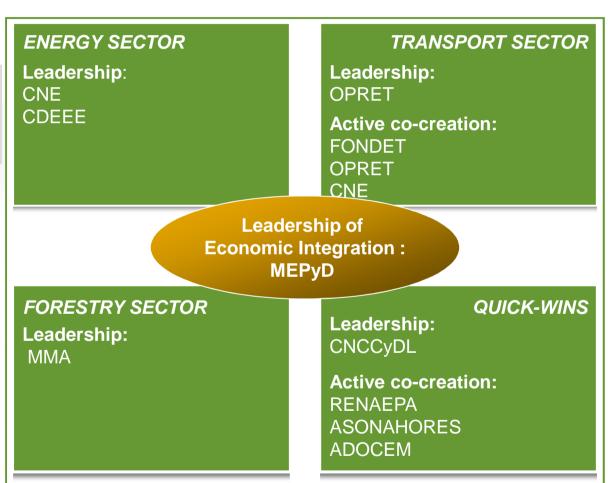
CPI (2012): The Landscape of Climate Finance 2012

OECD (2010): Low-Emission Development Strategies (LEDS): Technical, Institutional and Policy Lessons



# **2030 National Development Strategy**

**Artículo 28. Indicadores y Metas.-** Los Indicadores y Metas correspondientes al Cuarto Eje Estratégico son los siguientes:


The Law No.01-12 of the 2030 National Development Strategy of the country, provides indicators to reduce emissions and adapt to climate change.

| Indicadores                                                                                                             | Unidad /<br>Escala de<br>medición                                                                                      | Línea Base |       | METAS QUINQUENALES |      |      |      |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------|-------|--------------------|------|------|------|
|                                                                                                                         |                                                                                                                        | Año        | Valor | 2015               | 2020 | 2025 | 2030 |
| 4.1 Emisiones de dióxido de carbono                                                                                     | Toneladas<br>métricas per<br>cápita                                                                                    | 2010       | 3.6   | 3.4                | 3.2  | 3.0  | 2.8  |
| 4.2 Áreas protegidas<br>nacionales                                                                                      | Porcentaje del<br>área territorial<br>total                                                                            | 2009       | 24.4  | 24.4               | 24.4 | 24.4 | 24.4 |
| 4.3 Tasa de deforestación anual promedio                                                                                | Porcentaje del<br>área forestal<br>total (Valores<br>negativos<br>indican<br>aumentos en el<br>área forestal<br>total) | 2005       | 0.1   | -0.1               | -0.2 | -0.2 | -0.2 |
| 4.4 Eficiencia en el uso de agua en sistemas y redes de distribución de agua y su aplicación final en sistema de riego. | Porcentaje del<br>agua<br>distribuida que<br>fue<br>aprovechada                                                        | 2010       | 28.0  | 36.5               | 45.0 | 45.0 | 45.0 |

# Moving the strategy forward, the respective government agencies have developed concrete action plans

# 10 Core elements of sectoral action plans

- 1) Formulate CCDP aspiration
- Prioritize major programs and initiatives
- 3) Define implementation road maps
- 4) Learn from international experience and policy options
- 5) Outline pilots to test impact and feasibility
- 6) Build underlying institutional capabilities
- 7) Overcome hurdles and risks
- Identify required policies and policy changes
- Indentify required financing and financing options
- Plan stakeholder outreach and management



# The power sector holds 1/3 of the DR's abatement potential and will yield significant net gains in energy efficiency and generation

#### Power sector narrative



- Under BAU, power generation will increase by ~80% from 16 to 28 TWh until 2030, generated by a high-carbon fuel mix, dominated to 90% by coal, gas, fuel oil, and inefficient off-grid generation
- Power generating cost will grow even more expensive from 180 to 220 USD/MWh while emissions increase from 11 to 18 MtCO2e until 2030
- Total abatement potential in power sector is ~ 11 MtCO2e by 2030, approx. ~60% of BAU emissions
  - A cleaner generation mix contributes 60% of sector abatement potential (~ 7 MtCO2e)
  - Energy efficiency amounts to 40% of sector abatement potential (~4 MtCO2e)
- Because power generation under BAU is so expensive, ~95% of abatement potential can be captured at cost savings (~-110 USD abatement / ton): net gains amount to ~BUSD 1.2 per year by 2030

|                                                        | at cost savings (** 110 00B abatement / ton). Het gams amour                                                                                                                                                                                      | 11 to 2002 112 poi your by 2000                                                                                                                                                       |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prioritized Levers<br>(share of potential)             | Proposed measures                                                                                                                                                                                                                                 | Success factors                                                                                                                                                                       |
| Energy efficiency<br>(~40%)                            | <ul> <li>Energy efficiency can reduce needed power generation by ~18%,<br/>mainly through efficiency standards for new buildings, electronics,<br/>appliances, by changing light bulbs, and efficiency in industry</li> </ul>                     | <ul> <li>Convince public of net savings</li> <li>Ensure access to (cheap) capital</li> <li>Craft and enforce clear policy</li> </ul>                                                  |
| Renewables (~45%)                                      | Renewables potential is preliminary but significant and could provide up to ~40% of power generation by 2030 if the DR doubled hydro capacity to 1.1 GW, built 20 wind parks of 50MW each, and built 300MW of biomass and 800MW of solar capacity | <ul> <li>Attractive policy and incentive structure for (foreign) investors</li> <li>Grid improvements to integrate intermittent sources</li> </ul>                                    |
| Replace off-grid<br>generation by gas (~5%)            | Reducing off-grid generation from 24% to 5% of power generation and replacing it with 200 MW of new gas plants by 2030 would save an annual MUSD 40 and 0.4 MtCO2e in annual emissions                                                            | <ul> <li>Sufficient peak capacity to guarantee reliability</li> <li>Auto-generators planning with grid operators about joining</li> <li>Sufficient infrastructure in place</li> </ul> |
| Retire fuel-oil capacity early & replace by gas (~10%) | <ul> <li>Retiring all 1.4 GW of fuel oil plants that would remain in 2030 under BAU and replacing them with new gas plants would save ~MUSD 210 and ~1 MtCO2e per year</li> </ul>                                                                 | <ul> <li>Revisit contractual obligations<br/>where possible</li> <li>Give attractive incentives for early<br/>retirement</li> </ul>                                                   |

### **ENERGY**

# Stakeholder map

Multiple interactions with a wide range of stakeholders in the Energy Sector

### International cooperation and Civil Society

- Close contact with international development agencies
- To involve all relevant NGOs













- Technical Work Group with regular meetings
- Monthly meetings of the National Climate Change Council

#### Stakeholder outreach

- Private sector involved in planning and legislation, Monthly Forum of Development Partners -Generators - Distributors
- Workshops on awareness regarding climate change with











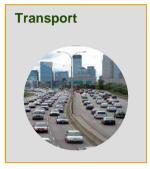

















# The transport sector has the potential to reduce the country's oil imports, thus significantly improving the DR's current account balance

#### **Transport sector narrative**



- Under BAU, the DR's vehicle fleet will increase from 1.9 to 3.5 million vehicles in 2030 (from ~100 to ~160 cars per 1000 inhabitants), resulting in increased fuel consumption (from 2.4 to 4.4 billion liters) and emissions (~8 to ~11 MtCO2e)
- Total abatement potential is ~6 MtCO2e amounting to ~50% of 2030 BAU emissions and is driven by
  - Increased efficiency standards across all vehicle categories
  - Shift of high-emitting gasoline/diesel vehicles to CNG
  - Substitution of traditional gasoline/diesel by biofuels
  - Shift of urban traffic in Santo Domingo to public transport
- Given the **low fuel efficiency** of today's BAU car fleet and **attractive biofuel potential** in the DR, ~80% of abatement potential can be captured at cost savings (Ø -60 USD abatement / ton): **net gains** in the sector amount to ~**MUSD 360 per year**

|                                         | per year                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                 |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prioritized Levers (share of potential) | Proposed measures                                                                                                                                                                                                                                                                                                                                                                                                                                 | Success factors                                                                                                                                                                                                 |
| Efficiency standards (~20%)             | <ul> <li>Efficiency standards on imported cars through regulation / taxation could<br/>reduce consumption of gasoline by ~150mn liters (3%) and diesel by<br/>~250 mn liters (5%) p.a. by 2030, saving USD ~270 mn p.a.</li> </ul>                                                                                                                                                                                                                | <ul><li>Effective policy of regulation and ta<br/>incentives</li><li>Reliable enforcement at customs</li></ul>                                                                                                  |
| Shift to CNG (~20%)                     | <ul> <li>Achieve a 25% share of vehicles using CNG by 2030 (~1.1 MtCO2e), while<br/>eliminating the share of vehicles that currently use LPG</li> </ul>                                                                                                                                                                                                                                                                                           | <ul> <li>Secure sufficient supply of CNG<br/>and build distribution infrastructure</li> </ul>                                                                                                                   |
| Biofuels (~50%)                         | <ul> <li>Aspirational scenario of domestic production (E20 + B15) plus imports of E50 + B68 by 2030 yields a ~2.8 MtCO2e abatement potential</li> <li>In a purely domestic base case, the DR achieves E20 fuel blend by producing ~340 million liters of ethanol from sugarcane p.a. by 2030</li> <li>Local B15 biodiesel production can provide 15% of diesel needs by 2030 through jatropha plantations on 200 kha of marginal lands</li> </ul> | <ul> <li>Opportunity to import Biofuels at competitive rates and volumes</li> <li>Attractive incentives FDI</li> <li>Sugarcane yield growth</li> <li>Successful introduction of jatropha cultivation</li> </ul> |
| Public transportation (~10%)            | <ul> <li>Shift ~700,000 passengers per day traveling in public cars and buses to 5 new metro lines, displacing ~2,000 old, inefficient vehicles and saving ~50 million liters of fuel per year</li> <li>Build 9 BRTs lines, transporting 1.3 million passengers per day, substituting older bus fleet and saving ~150 million liters of fuel per year</li> </ul>                                                                                  | <ul> <li>Smart financing of required capex<br/>of ~2.4 BUSD (~80% is for the<br/>metro and ~20% is for the BRTs)</li> </ul>                                                                                     |

# **TRANSPORT**

# Stakeholder map

Stakeholder map for the Transport Sector

# Government

- OPRET
- FONDET

**Institutions** 

- OMSA
- OTTT
- CNE
- MIC

OPRET

MOPC











### **Private sector**

- Vehicle distributors associations
- Sugar producers
- Natural gas/CNG distributors (for example AES Dominicana)

# Other government stakeholders

- Ministry of environment
- Ministry of agriculture
- Treasury Department
- DGII and DGA
- DGTT
- AMET



















Anadive





# The forestry sector can attract tangible international funding to the DR and create sustainable employment trough active abatement

#### Forestry sector narrative



- Acknowledging the high uncertainty given the lack of reliable/consistent land use data. BAU 2030 emissions from the forestry sector could account for ~4 MtCO2e from deforestation, while carbon sequestration from A/R could account for ~3 MtCO2e
- The forestry sector could abate up to ~7 MtCO2e by 2030 (14% of BAU), almost equally driven by reduced deforestation / forest fire prevention and increased af-/reforestation efforts
- Implementation will have significant economic impact on the DR in terms international capital flows (REDD+ and CDM funding of ~ MUSD 35) and increased employment (~ 15.000 additional jobs)

#### **Prioritized Levers** (share of potential)

Reduced deforestation (~30%)

Forest fire prevention  $(\sim 20\%)$ 

Afforestation & Reforestation (~50%)

#### **Proposed measures**

- ~2,500 ha/yr illegal charcoal logging reduced by 100% through community support programs<sup>1</sup> and enforcement
- ~800 ha/yr of clearing for agriculture reduced by 100% through extension program and enforcement
- ~1,300 ha/yr of deforestation reduced by 50% through structured urban planning / zoning program
- ~1.300 illegal clearing for infrastructure reduced by 50% through enforcement
- ~4,500 ha/yr affected by forest fires brought down by 90% through
  - enforcement and fire prevention / response program
- Increase A/R efforts by a factor of 4, from 6.3 kha in 2010 to ~25 kha/yr in 2030 to a- / reforest an additional 180 kha over the next 20 years
- Implies a 9% growth p.a in the A/R rate

#### Success factors

- Capabilities to reach a fragmented rural population
- Trained staff of agronomists to implement program
- Increase size and capabilities of enforcement
- Build fire detection capabilities and increase enforcement size
- Improve clarity on land ownership and titling
- Educate land owners on associated benefits

<sup>(1)</sup> Agro-forestry, productivity, land ordering and forest management programs

#### FORESTRY SECTOR

# Stakeholder map







**PNUD** 

UNION

BANCO

**EUROPEA** 

**MUNDIAL** 

CATHALAC



















PNUMA SE DE







### Government

- Ministry of environment
- Ministry of agriculture •
- Ministry of tourism
- National Council for Climate Change
- CNE
- **IDIAF**
- **CONIAF**
- MOPC
- CODIA
- **UAFAM**

#### Academia

- Universities
  - **PUCMM**
  - ISA
  - **UASD**
  - INTEC
  - **UNPHU**
  - **CATIE**

#### **National NGOs**

- Consorcio
  - Ambiental Dominicano
- CEDAF
- Cámara
- Forestal
- ANPROFOR
- IDARD
- ASODEFOS
- SODIAF

International organizations

USAID

FAO

BID

GIZ

TNC

JICA

AFD

**AECID** 

- Sur Futuro Plan Sierra
  - Fund.
  - Progressio













































# Selected easy-to-implement levers in the waste, cement, and tourism industries could yield an additional ~10% of abatement potential

#### **Quick wins narrative**



- Under BAU, waste, cement, and tourism will account for ~9.5 MtCO2e of annual emissions in 2030
- While these sectors are not key sectors, they present a few outstanding abatement opportunities
- Technical abatement potential in the waste and cement sectors is an annual ~6 MtCO2e by 2030, of which ~5 MtCO2e can be captured by only 5 measures that are relatively easy to implement
- Implementing these quick wins yields a net benefit: Average abatement cost is a saving of USD 25 per ton, generating in sum cost savings of an annual USD 110 million by 2030 for the DR
- In addition, the tourism sector can be a catalyst for implementation of strategies for emissions reduction in the power, transport, and waste sectors

| Prioritized Levers (share of potential) | Proposed measures                                                                                                                                                                                                                                                                                                                                                            | Success factors                                                                                                                                                                                                                 |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waste (~80%)                            | <ul> <li>Recycling 50% of valuable waste can save ~1 Mt and USD 9 million p.a.</li> <li>Equipping 30% of landfills to capture methane for cooking or power generation would save 1 MtCO2e and USD 5 million per year by 2030</li> <li>Using half of all organic waste for power generation using anaerobic digestion would reduce annual emissions by ~1.3 MtCO2e</li> </ul> | <ul> <li>Recycling system implemented</li> <li>Create demand for methane</li> <li>Attract investment for retrofitting</li> <li>Investment facilitation</li> </ul>                                                               |
| Cement (~20%)                           | <ul> <li>Cement production is currently powered to 90% by fossil fuels. Increasing the share of bio- and fossil waste from 10% now to 50% by 2030 would save ~0.4 MtCO2e and USD 35mn per year</li> <li>Reducing the ingredient share of clinker in cement from 95% to 77% by 2030 would reduce emissions by 0.8 MtCO2e and save another USD 75mn per year</li> </ul>        | <ul> <li>Support and assistance for sector's ongoing initiatives</li> <li>Profitable supply chain for biowaste and fossil waste</li> <li>Achieve agreement between cement and coal industry for provision of fly ash</li> </ul> |
| Tourism (N/A)                           | <ul> <li>The tourism sector is currently responsible for ~1 MtCO2e of annual emissions from power, transport and waste, but is poised to change</li> <li>A Sustainable Tourism Strategy would be an exemplary catalyst</li> <li>Tourism also is a key opportunity to promote and capitalize on the CCDP by promoting the DR as a green, high-value destination</li> </ul>    | <ul> <li>Get buy-in from tourism         association and large hotels</li> <li>Joint decision of major         stakeholders to promote the DR as         a sustainable destination</li> </ul>                                   |

### SOLID WASTE

# A successful implementation requires close cooperation between a wi range of stakeholders

Key actors of the **Solid waste Sector** 

### Close cooperation with the municipalities

- Reach all of the municipalities, closely cooperate with the largest ones
- Consult with provincial governments







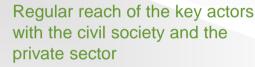



















- Monthly meetings of the National Council for Climate Change
- Regular meetings of the **Technical Work Group**



- Regular meetings of the **Technical Work Group**
- Workshops with the private sector on business opportunities
- Close contact with international development agencies in order to attract support





**AES** Dominicana























edenorte









PNUMA

















#### **CEMENT**

A successful implementation requires close cooperation between the cemsector, the national, local and municipal governments, and the industry players

Key actors of the cement sector

### International development agencies

 Close contact with international development agencies in order to attract support in the process of making the cement sector more sustainable













# Integrated action from the government

- Cooperation in the regulation reform, assistance in the establishment of a supply chain and delivery guarantees
- Regular meetings of the Technical work group





# Achieve win-win among the industry partners

- Cement industry working with the coal plant operators and other industry partners that produce clinker alternatives
- Technical Work Group meetings

















### **TOURISM**

# A successful implementation requires close cooperation between the private sector, national government and international partners



**Key Actors in the Tourism Sector** 

### **International Development Agencies**

 Close contact with international development agencies to attract support in the process of turning the tourism sector more sustainable and promoting the development of ecotourism













# Comprehensive government actions

- Monthly meetings of the National Council for Climate Change
- Periodical meetings with the technical work groups

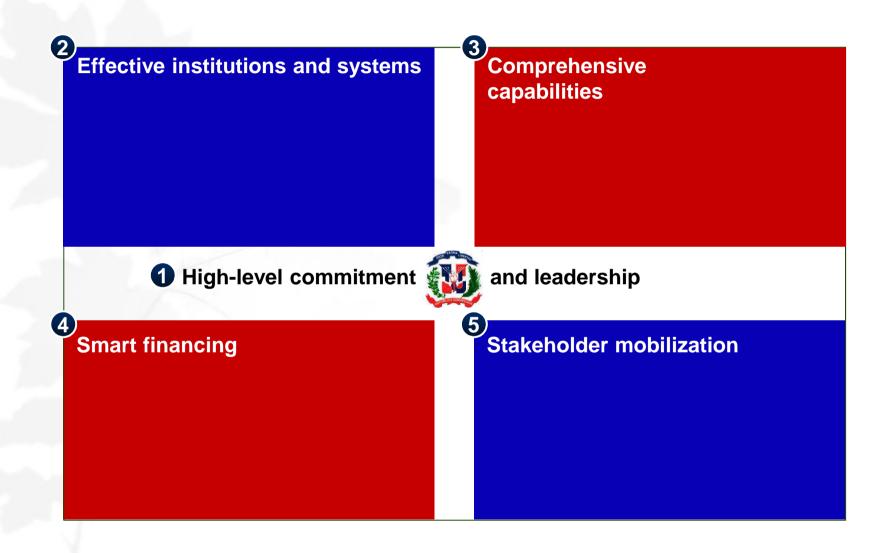


- Focus point in ASONAHORES
- Close cooperation and joint planning of the tourism sector with waste dumpster operators, electricity generators and distribution companies
- Periodical meetings with technical work groups, involving government representatives
- Work with touristic operators to communicate the sustainable tourism and ecotourism strategy of the DR
















# The DR needs to have 5 central success factors in place to achieve a high-impact, transformative CCDP







| Total projec | ts found: 13                                                                                       |                       |                                                                        |                                          |            |    |
|--------------|----------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------|------------------------------------------|------------|----|
| Registered   | Title                                                                                              | Host<br>Parties       | Other Parties                                                          | Methodology<br>*                         | Reductions | Re |
| 20 Oct 06    | El Guanillo wind farm in Dominican republic                                                        | Dominican<br>Republic | Spain                                                                  | ACM0002 ver.<br>6                        | 123916     | 01 |
| 09 Apr 10    | Bionersis project on La Duquesa landfill, Dominican Republic                                       | Dominican<br>Republic | United Kingdom of Great Britain<br>and Northern Ireland<br>France      | AMS-I.D. ver.<br>13<br>ACM0001 ver.<br>9 | 359810     | 25 |
| 28 Nov 11    | Matafongo Wind Farm                                                                                | Dominican<br>Republic | France<br>United Kingdom of Great Britain<br>and Northern Ireland      | ACM0002 ver.<br>12                       | 70275      | 54 |
| 29 Mar 12    | Quilvio Cabrera Wind Farm Project                                                                  | Dominican<br>Republic |                                                                        | AMS-I.D. ver.<br>17                      | 10937      | 55 |
| 01 Jun 12    | CEMEX Dominicana: Alternative fuels and biomass project at<br>San Pedro Cement Plant               | Dominican<br>Republic | United Kingdom of Great Britain and Northern Ireland                   | ACM0003 ver.<br>7                        | 99797      | 45 |
| 06 Aug 12    | Textile Offshore Site Dominicana Biomass Residues<br>Cogeneration Project (TOS-2RIOS)              | Dominican<br>Republic | France                                                                 | AMS-I.C. ver.<br>19                      | 35738      | 69 |
| 27 Aug 12    | Los Cocos Wind Farm Project                                                                        | Dominican<br>Republic |                                                                        | ACM0002 ver.<br>12                       | 54183      | 70 |
| 14 Sep 12    | Steam Generation Using Biomass                                                                     | Dominican<br>Republic | France                                                                 | AMS-I.C. ver.<br>19                      | 48050      | 72 |
| 12 Oct 12    | Palomino Hydropower Project in the Province of San Juan de la<br>Maguana in the Dominican Republic | Dominican<br>Republic |                                                                        | ACM0002 ver.<br>12                       | 119598     | 65 |
| 17 Oct 12    | Solar PV Project in Dominican Republic                                                             | Dominican<br>Republic | France                                                                 | ACM0002 ver.<br>12                       | 35375      | 77 |
| 27 Oct 12    | Granadillos Wind Farm                                                                              | Dominican<br>Republic | United Kingdom of Great Britain and Northern Ireland                   | ACM0002 ver.<br>12                       | 69657      | 79 |
| 03 Dec 12    | 30MW Solar PV - Monte Plata                                                                        | Dominican<br>Republic | Switzerland<br>United Kingdom of Great Britain<br>and Northern Ireland | ACM0002 ver.<br>13                       | 29254      | 85 |
| 30 Dec 12    | La Isabela- Heat & Electricity generation from biomass residues                                    | Dominican<br>Republic |                                                                        | AMS-I.C. ver.                            | 29968      | 94 |

<sup>\*</sup> AM - Large scale, ACM - Consolidated Methodologies, AMS - Small scale
\*\* Estimated emission reductions in metric tonnes of CO2 equivalent per annum (as stated by the project participants)

# International CDM Programmatic





Programa de Actividades para Tratamiento de Efluentes Industriales y Agroindustriales (PoA Ometepe Biogás)







HACIA UNA INDUSTRIA Y AGROINDUSTRIA SOSTENIBLE

www.ecoressources.com / www.mabanaft.com



| NEGOTIATIONS                                    | UNFCCC N      | UNFCCC NAMA Registry: NAMAs Seeking Support for Implementation |                       |                        |  |  |  |
|-------------------------------------------------|---------------|----------------------------------------------------------------|-----------------------|------------------------|--|--|--|
|                                                 |               |                                                                |                       |                        |  |  |  |
| Meetings                                        |               |                                                                |                       |                        |  |  |  |
| Documents & Decisions                           | Back to NAMA  | Back to NAMA registry page                                     |                       |                        |  |  |  |
| Bodies                                          |               |                                                                |                       |                        |  |  |  |
| FOCUS                                           | Submitted inf | Submitted information                                          |                       |                        |  |  |  |
| Adaptation                                      |               |                                                                |                       |                        |  |  |  |
| Finance                                         |               |                                                                |                       |                        |  |  |  |
| Mitigation                                      | Ref.no.       | Date of submission                                             | Party                 | Support for NAMAs      |  |  |  |
| Technology                                      | 1             | 20 November 2012                                               | Chile                 | ⅓ PDF (128 kB)         |  |  |  |
| PROCESS                                         |               |                                                                |                       |                        |  |  |  |
| Essential Background                            | 2             | 27 November 2012                                               | Uruguay               | 🔁 PDF (232 kB)         |  |  |  |
| Kyoto Protocol                                  |               |                                                                |                       |                        |  |  |  |
| Cooperation & Support                           | 3             | O OON In combine 2010                                          |                       |                        |  |  |  |
| Finance                                         | 3             | 28 November 2012                                               | Republic of Indonesia | 🔁 PDF (131 kB)         |  |  |  |
| Technology<br>Education & Outreach              |               |                                                                |                       |                        |  |  |  |
| Response Measures                               | 4             | 21 December 2012                                               | Chile                 | 🔁 PDF (127 kB)         |  |  |  |
| Capacity-building                               |               |                                                                |                       |                        |  |  |  |
| Cooperation with International<br>Organizations | 5             | 12 January 2013                                                | Cook Islands          | ₫ PDF (65 kB)          |  |  |  |
| Activities Implemented Jointly                  |               |                                                                |                       |                        |  |  |  |
| NAMA Registry                                   |               | 0 M 2012                                                       | 01.3                  | =1                     |  |  |  |
| Market and Non-Market<br>Mechanisms             | 6             | 8 March 2013                                                   | Chile                 | ☑ PDF (310 kB)         |  |  |  |
| Science                                         |               |                                                                |                       |                        |  |  |  |
| Adaptation                                      | 7             | 22 March 2013                                                  | Dominican Republic    | 🔁 PDF (145 kB)         |  |  |  |
| National Reports                                |               |                                                                |                       |                        |  |  |  |
| GHG Data                                        |               |                                                                |                       | 🔁 PDF (146 kB)         |  |  |  |
| Methods                                         |               |                                                                |                       |                        |  |  |  |
| Gender and Climate Change                       |               |                                                                |                       | Additional information |  |  |  |
|                                                 |               |                                                                |                       |                        |  |  |  |



# **NAMAs**

- NAMA in tourism (CCAP) (In NAMA Register)
- NAMA in cement and waste (GIZ, BMU) (In NAMA Register)
- NAMAs in energy efficiency (CNE, Worldwatch)



# For the good of our world, our region, and our country

