

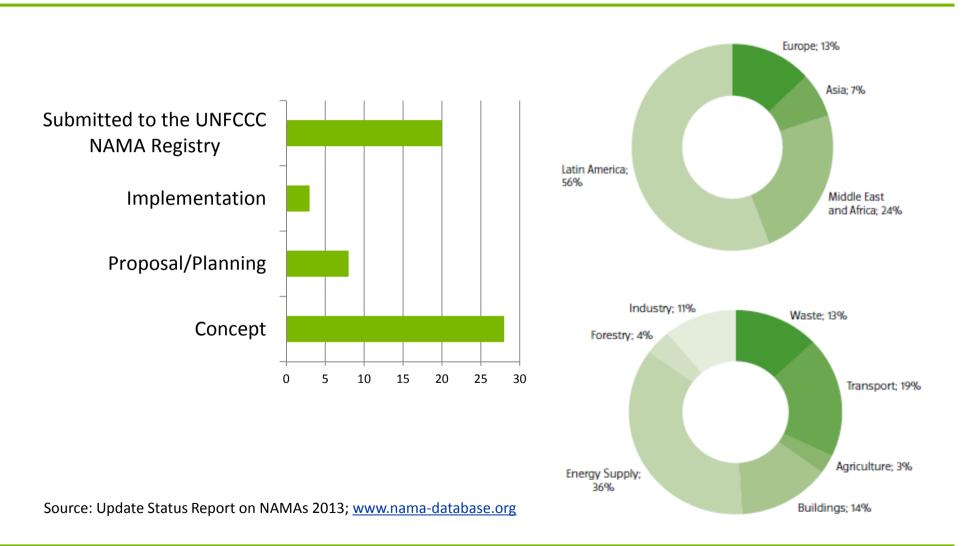
Development of NAMA ideas based on national priorities

Frauke Röser

MRV Summer School 2013 Hanoi, 22 August 2013

f.roeser@ecofys.com

Overview


- > Brief overview of state of play of NAMAs
- > NAMAs in the context of LEDS
- > NAMA development process
- > Criteria for selection of NAMAs
- > Stakeholder involvement lessons learned
- > Development Impact Assessment tool

Key aspects of a NAMA

A NAMA is a **voluntary** intervention by a developing country government:

- > Which is in line with national and/or local development priorities
- > Which receives **support** from domestic and/or international sources
- > Which has effect on reducing **GHG emissions** either directly or indirectly
- > Which is measurable, reportable and verifiable ("MRVable") to ensure transparency of the NAMA outcomes

Status of NAMAs worldwide

Linking planning to action

- > LEDS can provide the umbrella or coherent policy framework to prioritise actions
- > Process can be bottum up or top down

Low carbon development planning

- > Climate led approach
 - Mitigation options prioritised according to development benefits
 - Development co benefits
- > Development led approach
 - Development options ranked according to mitigation impact
 - Mitigation as co benefit
- > Country specific according to national circumstances
- > Full transformation to low carbon development pathway not proven yet
- Not always win win trade offs likely!

NAMA development process

IDEA

CONCEPT

PROPOSAL

- Policy priorities
- Sector strategies
- GHG profiles
- Institutional set up
- Stakeholder mapping

Assessment of technical and political context

Selection and prioritisation of NAMAs

- NAMA options/ ideas
- Define criteria

- Barrier analysis
- Actions/ measures
- Finance
- MRV
- Implemenation

Detailed NAMA develoment

7

28/08/2013

Policy Assessment

- > Sources of information:
 - National and regional government strategies & plans
 - Development plans/ LEDS
 - National Communications
 - TNAs/ Technology Action plans
 - Key sector strategies, plans and objectives
 - Existing mitigation activities
 - NAMA best practice examples
- > Identify policy priorities
- > Develop a set of NAMA ideas
- > Process: Ministry Interministerial Wider Stakeholders

NAMA development process

IDEA

CONCEPT

PROPOSAL

- Policy priorities
- Sector strategies
- GHG profiles
- Institutional set up
- Stakeholder mapping

Assessment of technical and political context

Selection and prioritisation of NAMAs

- NAMA options/ ideas
- Selection criteria

- Barrier analysis
- Actions/ measures
- Finance
- MRV
- Implemenation

Detailed NAMA develoment

9 28/08/2013

Selection and prioritisation

- > Review NAMA ideas/ options
- > Define selection criteria
- > Stakeholder engagement
 - Multi stakeholder processes important for input & buy in
 - Involve different parts and layers of government
 - Private sector, civil society, research community as appropriate
- > When to involve stakeholders?
 - Initial assessment?
 - To develop ideas?
 - To set criteria?
 - To review options?
 - For validation?

Criteria for selection of NAMAs

Countries:

- >GHG reduction potential
- >Transformation potential
- >Development benefits
- >Cost
- > Ease of implementation
- >High level political support
- >Stakeholder support
- >Attractiveness to funders

Funders (additional):

- > Robust MRV system
- > Unilateral finance elements
- > Embedded in national policy
- > Private sector leverage
- > Replicability
- > Innovation

Example: Prioritisation Process Chile

- > Multi stakeholder process
- > Prioritisation of NAMAs in the transport sector
- Exercise to prioritise criteria for NAMAs
- Exercise to discuss and priortise NAMA options

Criteria	Scoring
GHG Reduction potential	33
Data availability, simplicity MRV	22
Stakeholder support	19
Economic attractiveness (donors, private sector	18
Cost of the NAMA	14
Non GHG benefits	9
Complexity of implementation	7
Existing activities which facilitate implementation	4
Other	13

Lessons Learned

- > Involving stakeholders important to capture knowledge
- > Carefully manage expectations
- > Be clear on the role of stakeholders
 - > What is the process?
 - > Who takes decisions?
- > Ensure "right" balance between different stakeholder groups
- > Bilateral consultation input, concerns, sensitive issues
- > Multilateral meetings/ workshops
 - > Awareness
 - > Validation

DIA Tool

Climate and development indicators

		Climate			Econ	omic		Social					
Options	Abatement potential 2020 (ktCO ₂)	Abatement cost 2020 (USD/tCO ₂)	Climate resilience	GDP / macroeconomic impact	Energy security	Rural economic impact / development	Household / consumer impact	Employment	Energy access	Health	Education	Gender	Environmental impact
IMPROVED COOKSTOVES													
LPG FOR COOKING		High Positive											
PRODUCTIVE USES OF ENERGY (PUE)	Positive												
IMPROVED CHARCOAL	Neutral / Minor impact												
PRODUCTION LANDELL CAS CENERATION		Negative											
LANDFILL GAS GENERATION				- Uncertain									
BIODIESEL PRODUCTION													: ECI

Example – Evaluation of impacts (Ghana)

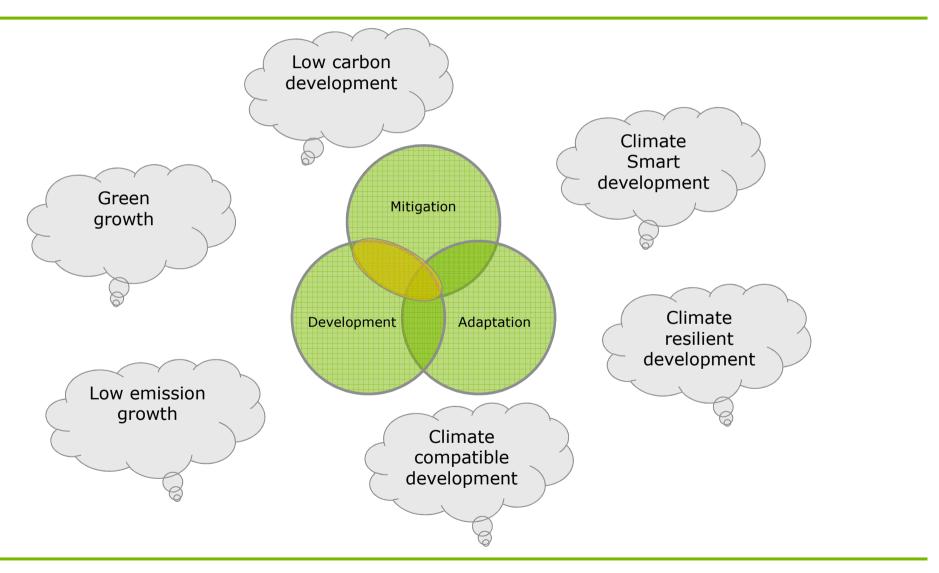
High Positive			Econ	omic									
Positive Neutral / Minor impact Negative Uncertain	Abatement potential 2020 (ktCO ₂)	Abatement cost 2020 (USD/tCO ₂)	Climate resilience	GDP / macroeconomic impact	Energy security	Rural economic impact / development	Household / consumer impact	Employment	Energy access	Health	Education	Gender	Environmental impact
IMPROVED COOKSTOVES Rural woodfuel use intensity reduced by 10% through improved cookstoves	200	-2 to 0		-	<u> </u>	2.5	= .E	<u>—</u>	<u> </u>	Ξ	<u> </u>	•	<u> </u>
LPG FOR COOKING LPG use by 2020 is 50% as opposed to projected 24.5%	360	3 to 85		-	-	-	-	D			-		•
PRODUCTIVE USES OF ENERGY (PUE) Irrigation of 14000 ha with RE (pilot prog.) 2,000 RE powered MFPs (pilot prog.)	20	n.a.*	-		-	•				-			-
Plantations and improved conversion technologies penetrate 10% of supply	100	1.5 to 20		-	-			-	-		-		
LANDFILL GAS GENERATION Accra and Kumasi landfills developed by 2020; approx. 30 MW of generation	360	18	-	-		-	-		-		-	-	
BIODIESEL PRODUCTION Domestic requirement for 5 percent blend by 2020	295	66	D	-		-	-	-	-	-	-	-	D

Source: ECN

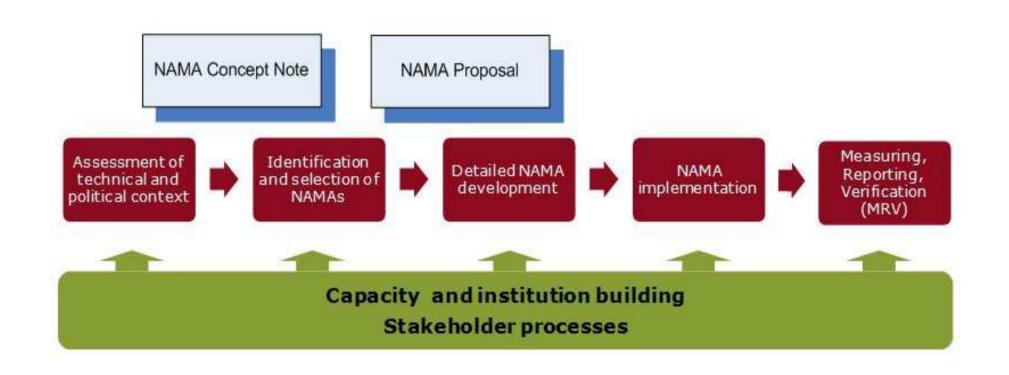
Conclusions

- > NAMA identification process can have many starting points
- > Start from what is already there
- > Involving stakeholders throughout is key
 - > Trust
 - > Ownership
 - > Knowledge
- > But coordination between stakholders can be complex
 - > Capacity constraints
- > There may be conflicting priorities- trade offs
- > Technical assessments have limitations political decisions
- > Strong (political) leadership important

Thank you!


Ecofys Germany GmbH

International Climate Policies Am Karlsbad 11 10785 Berlin Germany


Frauke Röser

T: +49 (0)30 29773579-32 M: +49 (0)172 200 4129 E: f.roeser@ecofys.com

What is low carbon development?

NAMA development process

Example: Prioritisation Process Chile

-	CRITERIO	N° SELEC CIONE S
1. Efec	Potencial de reducción de emisiones de Gases to Invernadero	33
2.	Costo del NAMA	14
3.	Apoyo de grupos de interés (stakeholders)	19
4.	Disponibilidad de datos y simplicidad para aplicar métodos MRV	22
5.	Factibilidad económica (atractivo para donantes, sector privado, etc.)	18
6.	Complejidad en la implementación	7
7.	Beneficios no asociados a la reducción de emisiones de GEI.	9
8.	Actividades existentes que facilitan implementación	4
9.	Posibilidad de catalizar cambio cultural	10
10.	¿Otros?	13
	Total selecciones	149