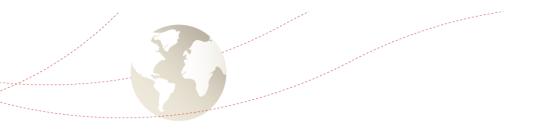


NAMA Prioritization

- Review and alignment of different objectives and interests of stakeholders -


Summer School August 22, 2013, Hanoi

NAMA specifics

- ✓ Needs a robust MRV-system
- ✓ Fosters transformational change
- ✓ Should be coherently embedded in long-term mitigation architecture: LEDS

NAMA Prioritization Approach

"Supported Stepwise Approach":

Step 1: Convene stakeholders around the NAMA table

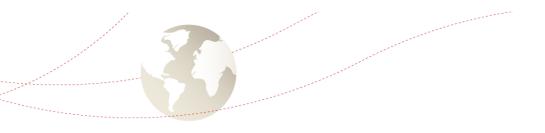
Step 2: Put all NAMA ideas on the table

Step 3: Define your set of NAMA objectives

Step 4: Define your set of NAMA co-benefits

Step 5: Score objectives and co-benefits

Step 6: Weight objectives and co-benefits


V

Step 7: Prepare the scenario analysis

Step 8: Review the results of the prioritization exercise

			Social Impacts	Economic Impacts	Environmental Impacts	Ease of Implem	entation	
	MAC Curve	Technologies	Feight, FRICEAGE, EARTH DESERBANDER, CORP.	ER stajouteur tege	Water Biodiverity	kilglinett vitt leiett Kilglinett vite	Salahundi huo Salaholdes huo Salaholdes huos	Curies Parates
1		1. Lighting	• •		- 0	- •	_	_
2		2. Smart Grid – Automated Residential Systems	•	- •	• •	- 0		D
3	High Positive	3. Smart Grid - AMI with Visual Display	• • • - •			0 0		•
44	Positive	Building Management Systems	• - • •		• •			D
	— Neutral	5. Hybrid Vehicles		• •	• •	• –		•
8	Negative	6. Geothermal		•	• •			_
9		7. Landfill Gas Power Generation			• •	•		\Box
···· 1	10	8. Wind (low-cost)	- • • •	•	• -		•	•
500 -	12	Industrial Improvements (retrofits, new builds)	○ • • ○ -	0 • • 0	□ •	• –		
	····· 13	10. Soil Sequestration (mid-cost)	- •	□ •	•		•	•
	14	11. Soil Sequestration (high-cost)		□		• -	_	
	15	12. Crop Rotations	^ ~ □ - •	• • -			•	$\overline{}$
	16	13. Afforestation (low-cost)	- • • •	• • •	- •	• -	_	D
	18	14. Forest Management (mid-cost)	- - • □ -	• • •		• •	•	_
		15. Efficiency-Commercial Retrofits	_ • • •	□ - • •	• •	□	•	_
	17	16. Efficiency-Residential Retrofits	^ • ^ □ −	0 0 0	- ∪	□	_	_
		17. Wind (high-cost)	-	• • • •	→ •	0 0		D
1,000		18. Afforestation (mid-cost)		□ • • −	□ –		•	•
	18	19. Forest Management (high-cost)		• •	• 🗸		_	D
		20. Plug-in Vehicles	• • • - •	• • •	□ •		_	_
	19 20	21. Ethanol-fueled Vehicles	- - • • -	^ D D -			_	_
	20 21	22. Solar PV (utility scale)	- •	0 0 0	D -	0 -		•
	22	23. Nuclear	• • • • -	• • • •	- •	• -	_	_
	23	24. CCS (new build, post-combustion coal)	• • • -	^ • • □			. 0	•
		25. Efficiency-Residential New Builds			• •	• •	_	•
1,500 -		26. Landfill Projects (high-cost)	- 0 • - 0	• - • •	•	• •	_	_
1,500	24	27. Biomass	• • • •	• • • □	• •	•	_	_
	25	28. Gas Industry Projects	- • • •	• •		0 0		
	26	29. Electric Vehicles		0 0 0				_
	27 29	30. CCS (retrofit, post-combustion coal)				_	D	_
		31. Afforestation (high-cost)			• -	• •		
	30 31	32. Solar PV (residential)		→				_
	32	33. CCS (new build, oxyfuel, coal)	0 - 0 0	• • • •	- •			
	32	34. Coal Mine, Oil Industry, High GWP, Wastewater Projects	• • • •	- • • □	_ •			
2,000 -	33	35. Coal-gas Fuel Switch for Installed Fleet	- 0 • • 0	• • •		•		
	34	36. CCS (new build, pre-combustion IGCC)		• • -	D -			
	36	37. CCS (retrofit, oxyfuel, coal)(\$107)		• - • -		- 0		D
I Abatement tial (MtCO2e)	36 36							
tiai (ivitCO2E)	3	8 20 C Industry Project (black cont) (- £1,000)		• • - 0				_

NAMA Prioritization Approach

"Supported Stepwise Approach":

Step 1: Convene stakeholders around the NAMA table

Step 2: Put all NAMA ideas on the table

Step 3: Define your set of NAMA objectives

Step 4: Define your set of NAMA co-benefits

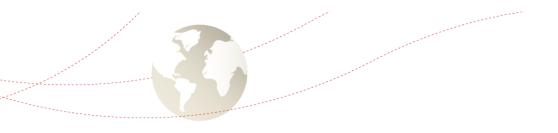
Step 5: Score objectives and co-benefits

Step 6: Weight objectives and co-benefits

V

Step 7: Prepare the scenario analysis

Step 8: Review the results of the prioritization exercise



Introduction of the MCA- Matrix

The Multi-Criteria-Analysis in this prioritization exercise is handled in a flexible MS Excel file. This allows for the flexible modification of scores, weights, and especially the analysis of scenarios.

The exercise provides two scenarios: Supported and unilateral NAMAs

NAMA	NAMA 1	NAMA 2	NAMA 3	NAMA 4	NAMA 5	Unilat. NAMA	Supp.
Objective	(Score 1 - 5)			(%)			
GHG emission reduction potential						10,00%	12,00%
Mitigation costs						18,00%	8,00%
MRV-ability						2,50%	2,50%
Stakeholder readiness, institutional complexity						5,00%	5,00%
Availability of instruments (to overcome barriers)						2,00%	2,00%
Share of funding already secured						30,00%	12,00%
Attract other international public support						The Co.	25,00%
Attract other private support						30,00%	12,50%
Buy-in after funders' retreat						The Co.	13,00%
Time frame						2,50%	5,00%
Replicability beyond nat. border]><(3,00%

NAMA Prioritization Approach

"Supported Stepwise Approach":

Step 1: Convene stakeholders around the NAMA table

Step 2: Put all NAMA ideas on the table

Step 3: Define your set of NAMA objectives

Step 4: Define your set of NAMA co-benefits

Step 5: Score objectives and co-benefits

Step 6: Weight objectives and co-benefits

U

Step 7: Prepare the scenario analysis

Step 8: Review the results of the prioritization exercise

Donor Criteria

	Direct & indirect contribution to global climate change mitigation	Sustainability and efficiency of impact
Development impact	GHG impact, ambition level, and transformational potential, embedding in LEDS or a comparable national strategy	Ownership and cobenefits
Effectiveness and feasibility	Robust MRV system	Comprehensiveness and financing plan