Challenges and Strengths in developing GHG inventory

CHINA

Xiaohua Zhang, Yue Qi 2014-07-08

National Center for Climate Change Strategy and International Cooperation

Contents

- Development of China's GHG inventory
- Challenges in developing GHG inventory
- Efforts to strengthen domestic MRV system

■ Development of China's GHG inventory

• 1994 National GHG Inventory: 2001~2004

China: Initial National Communication on Climate Change

• 2005 National GHG Inventory: 2008~2012,

2nd National communication

• 2008 National GHG Inventory: published in Jan. 2014

■ Development of China's GHG inventory

Guidelines:

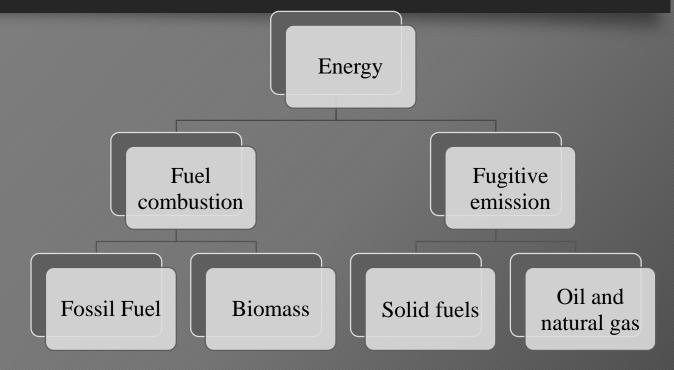
- Revised 1996 IPCC Guidelines for National GHG inventory
- Good Practice Guidance and Uncertainty Management in National GHG inventories
-

□ 1994 National GHG inventory

			Energy	89.9%	2795 Mt	3073 Mt
		4	Industrial process	10.1%	278 Mt	3073 ML
GHGs	Emission % (excl. LULUCF)		Carbon sequestration (land use change and forestry)		- 407 Mt	2666 Mt
CO ₂	73.5%		Agriculture	50.3%	17.20 Mt	
CH ₄	19.7% -	→	Energy	27.3%	9.37 Mt	34.29 Mt
N ₂ O	7.2%		Waste	22.5%	7.72 Mt	
Total	3650 MtCO ₂ e					
			Agriculture	92.5%	786 kt	
			Energy	5.9%	50 kt	850 kt
			Industrial process	1.8%	15 kt	

□ 2005 National GHG inventory

			Energy	90.4%	5404 Mt	F076 M+
			Industrial process	9.5%	569 Mt	5976 Mt
GHGs	Emission % (excl. LULUCF)		Carbon seque: (land use change ar		- 421 Mt	5554 Mt
CO ₂	80.0%	/	Agriculture	56.6%	25.17 Mt	
CH ₄	12.5%	\rightarrow	Energy	34.7%	15.43 Mt	44.46Mt
N ₂ O	5.3%	\	Waste	8.6%	3.83 Mt	
HFCs			Agriculture	73.8%	0.94 Mt	
PFCs	2.2%		Energy	10.3%	0.13 Mt	
SF ₆			Industrial process	8.7%	0.11 Mt	1.27Mt
Total	7467 MtCO ₂ e		Waste	7.2%	0.09 Mt	
			Industrial process		165	O Mt


National Center for Climate Change Strategy and International Cooperation

□ 2008 National GHG inventory

			Energy	89.9%	6510 Mt	72.40.145
			Industrial process	10.1%	730 Mt	7240 Mt
GHGs	Emission % (excl. LULUCF)		Carbon seque: (land use change ar		- 460 Mt	6780 Mt
CO ₂	82.2%	/	Agriculture	46.4%	21.57 Mt	
CH ₄	11.1%	\rightarrow	Energy	43.4%	20.13 Mt	46.44Mt
N ₂ O	4.4%	\	Waste	10.1%	4.69 Mt	
HFCs			Agriculture	73.4%	0.91 Mt	
PFCs	2.4%		Energy	12.1%	0.15 Mt	
SF ₆			Industrial process	6.5%	0.08 Mt	1.24Mt
Total	8810 MtCO ₂ e		Waste	8%	0.1 Mt	
			Industrial process		210	0 Mt

National Center for Climate Change Strategy and International Cooperation

□ Energy

- 1. Coal Consumption:
 - Categories and terminal-use of coal Quality of coal (lower heat level/carbon content) Oxygenation efficiency
- 2. Fugitive emission Coal mining
- 3. Biomass energy Localized emission factors

□ Land use change and Forestry

• Methodology:

Significant differences between Tier 2 of Revised IPCC Guidelines for National GHG Inventory and Tier 3 of 2006 IPCC Guidelines for National GHG Inventory;

• Data availability:

Key data for some major activities are missing, e.g. land use change, arable land management, grassland degeneration, forestry soil carbon, the inventory can not fully reflect the contribution of land use change and forestry sector to the GHG emission/sink.

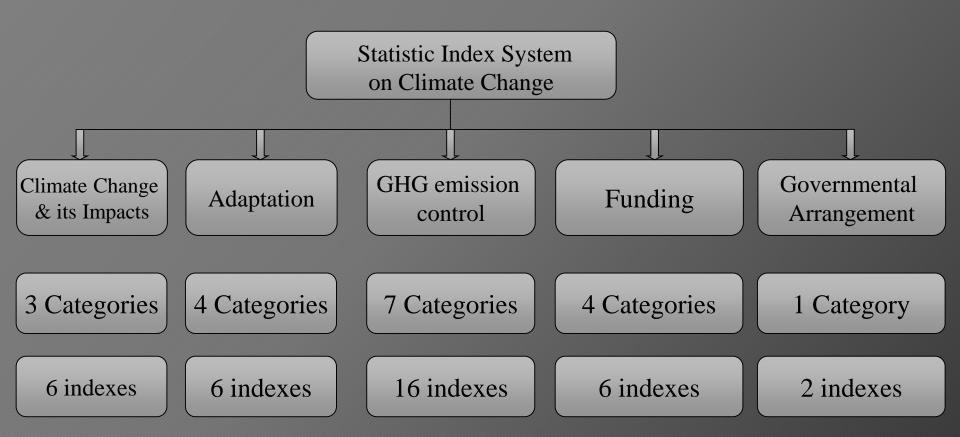
• Uncertainty:

Although various approaches have been applied for calculation of activity level and emission factors, due to the lack of samples, there are still large uncertainties in the assessment of some indicators, for some other cases, the results are even not available.

Challenges in developing GHG inventory

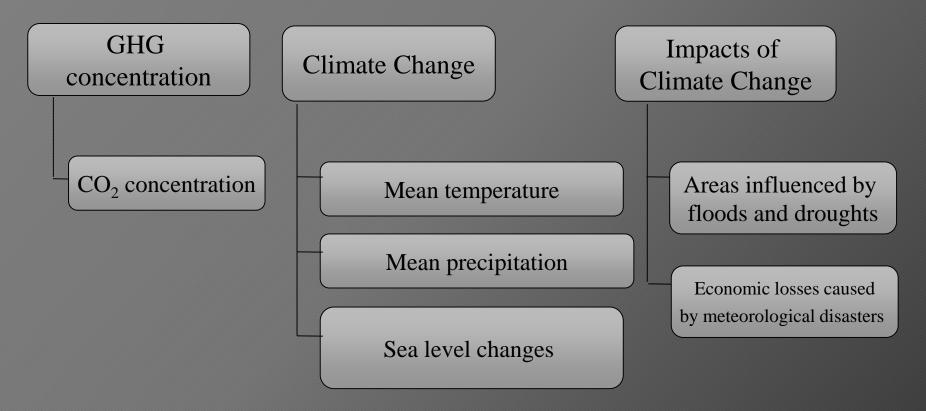
Uncertainties in methodologies, activity level, emission factors:

- ✓ Differences between governmental statistical classifications and the requirement for inventory, absence of data for some activity level indicators;
- ✓ Activity level data based on typical surveys are not sufficient;
- ✓ Emission factors based on sample tests and field measurements are lack of representativeness;
- ✓ Emission factors assessed in 2005 are used for some calculations due to the lack of updated studies.

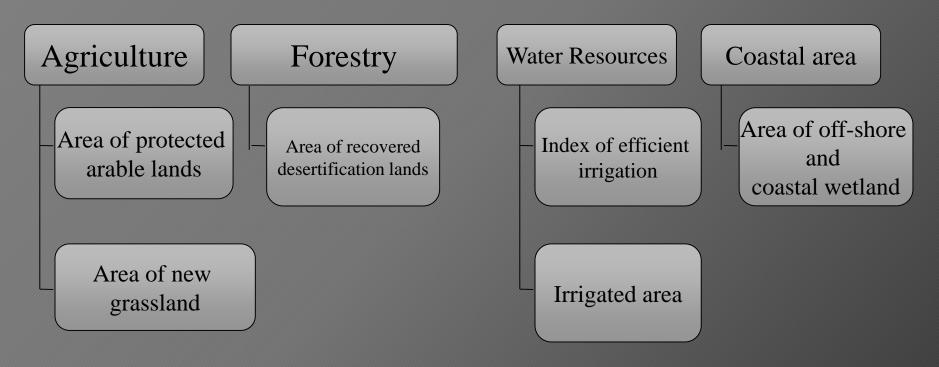

■ Efforts to strengthen the domestic MRV system

- Meet the report requirements of GHG inventory under the UNFCCC;
- Facilitate domestic mitigation actions.

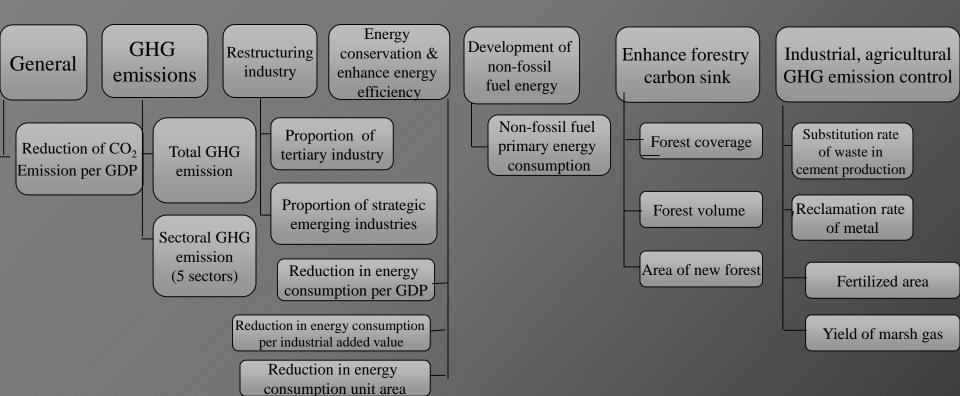
■ Efforts to strengthen the domestic MRV system

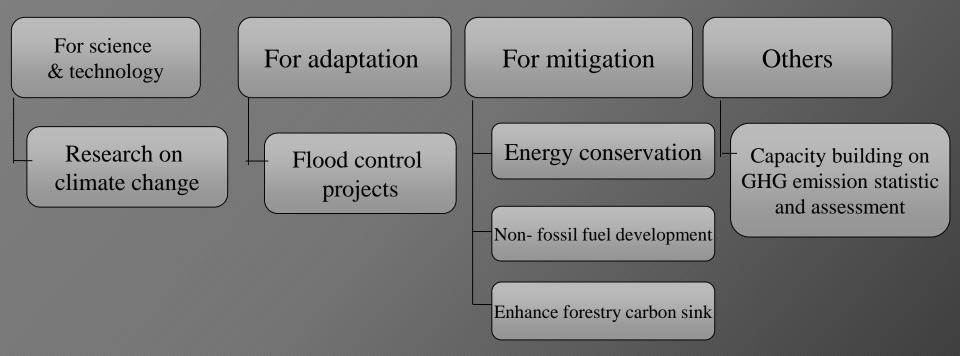

- Suggestions on enhancing Climate change statistics by National Development and Reform Commission and National Bureau of Statistics
- Work plan for controlling GHG emission during the 12th 5-year period by the State Council
- Assessment methods for the progress and achievement of CO₂ emission per GDP reduction targets

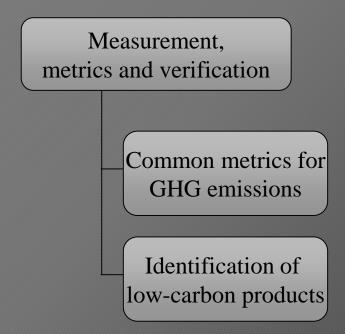
Establish Statistic Index System on Climate Change



National Center for Climate Change Strategy and International Cooperation


1. Climate change and its impacts


2. Adaptation


3. GHG emission control

4. Funding

5. Governmental Arrangement

Improve the basis for climate change statistics

- Energy Sector: energy balance table, industrial enterprises, transportation, building sector, etc.
- Industry: F- gases, etc.
- Agriculture
- Land use change and Forestry
- Waste

Establish administration system for climate change statistics

- GHG emission statistics and assessment system
- Climate change Data publishing system
- Management system for the using of climate change basic statistic data

Ensure the implementations

- Clear assignment of responsibilities
- Implement the financial support
- Enhance capacity building

■ Efforts to strengthen the domestic MRV system

- In 2020 reduce CO₂ emission per GDP by 40~45% relative to 2005 level
- China's 12th 5-year Plan (2011~2015): 17% reduction in carbon intensity;
- Accordingly, provincial targets have been set.

Climate Change Statistics and Assessment System

Carbon intensity reduction targets for 2011~2015

National Target		17	7 %	Hainan	11%
Beijing	18%	Zhejiang	19%	Chongqing	17%
Tianjin	19%	Anhui	17%	Sichuan	17.5%
Hebei	18%	Fujian	17.5%	Guizhou	16%
Shanxi	17%	Jiangxi	17%	Yunnan	16.5%
Inner Mongolia	16%	Shandong	18%	Tibet	10%
Liaoning	18%	Henan	17%	Shaanxi	17%
Jilin	17%	Hubei	17%	Gansu	16%
Heilongjiang	16%	Hunan	17%	Qinghai	10%
Shanghai	19%	Guangdong	19.5%	Ningxia	16%
Jiangsu	19%	Guangxi	16%	Xinjiang	11%

Many Thanks!

ZHANG Xiaohua, xzhang.ncsc@outlook.com qiyue@ncsc.org.cn